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Abstract. These expository notes accompany my BunG seminar talk on non-abelian Poincare
duality. The goal of this note is twofold. First, we describe the main ingredients in the proof of said
topic, following Lurie’s lecture notes. Then we elaborate on the main step – the space of rational
maps from a smooth projective curve X to a semisimple group G is cohomologically contractible.
We give a simple and new proof of this remarkable fact due to Drinfeld.

1. Non-abelian Poincare duality

Recall our setup: Let k be an algebraically closed field, X a smooth projective curve over k,
and G a smooth affine group scheme over X. We will assume G has a semisimple and simply
connected generic fiber over X. The goal this quarter is to compute the mass of BunG(X), i.e to
prove the Gaitsgory-Lurie Tamagawa number conjecture. This requires us to understand the l-adic
(co)homology of the stack BunG(X). The main goal of this note is to give some explicit realization
of H∗(BunG(X),Zl) using non-abelian Poincare duality, which we now explain.

Consider the Beilinson-Drinfeld Grassmannian GrG,Ran which parameterizes principal G-bundles
on X, together with a trivialization away from finitely many points of X. More precisely:

Definition 1.1. Define the prestack GrG,Ran whose S points, for S some test affine k-scheme,
consist of principal G-bundles P over S×X, together with a finite non-empty set of maps f1, . . . , fn :
S → X, and together with a trivialization of P on S×X \Γf1 ∪ · · · ∪Γfn, where Γfi are the graphs
of fi.

Then GrG,Ran comes equipped with two forgetful maps:

GrG,Ran

Ran(X) BunG(X)

φ ρ

Here, Ran(X) = Gre,Ran (So G = e is the trivial group) is the prestack whose S points are finite
nonempty subsets of the S points of X. The main theorem states:

Theorem 1.2 (Non-abelian Poincare duality). Suppose the generic fiber of G is semisimple and
simply connected. Suppose l−1 ∈ k. Then the forgetful map ρ : GrG,Ran → BunG(X) induces an
isomorphism on l-adic homology and cohomology:

H∗(GrG,Ran,Zl)
∼−→ H∗(BunG(X),Zl).
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1.1. l-adic homology for prestacks. Lets take a brief detour to recall how we define the l-
adic homology for prestacks [G1, Section 1.6]. Suppose Y is a prestack which may be written as
Y = colimI∈SYI where YI are schemes and S is an arbitrary category of indices. If we further
require transition maps to be closed embeddings (resp. proper), then we call such a prestack Y an
indscheme (resp. pseudo-indscheme). Then we can define the category of sheaves on Y as

Shv!(Y) := lim
I

Shv(YI)

where the limit is taken with respect to !-pullback and in the category of stable∞-categories. Then
given a category of sheaves on Y, we can take homology to be defined as

H∗(Y) := Γc(Y, ωY) = colimIΓc(YI , ωYI ),

where ωY , ωYI are the canonically defined dualizing sheaves on the respective spaces, and

Γc(YI , ωYI ) := (pYI )!ωYI , where pYI : YI → pt

is the homology with compact support. Given f : S → T a morphism of affine schemes, we have
f !ωT = ωS . Hence, the induced transition maps are obtained by applying Γc to the counit mor-
phism: f !f!ωT → ωT . We may summarize the above construction using (even more) sophisticated
language: Suppose we have a homology theory from affine schemes to vector spaces. Then Yoneda
provides an embedding of affine schemes to prestacks, and the process of extending this homology
theory to prestacks is given by “Left Kan extension”.

Schaff Vect

PreStack

H∗(−)

This formalism allows us to define l-adic homology for all prestacks of interest, i.e BunG(X),
GrG,Ran,MapsRan(X,Y ),Mapsgen(X,Y ). This also highlights an advantage to using the Ran-
version for rational maps and the affine Grassmannian – they are automatically (pseudo-)indschemes
and D-module theory and l-adic homology is more manageable for pseudo ind-schemes.

1.2. !-fibers of H∗(BunG, ωBunG
). Note, we may write

H∗(BunG, ωBunG
) = H∗(GrG,Ran, ωGrG,Ran

) = H∗(Ran(X), φ!(ωGrG,Ran
))

where the first equivalence is Theorem 1.2 and second one is definition. The latter interpretation
has the advantage that the Ran(X) space is independent of the group scheme G, and φ!(ωGrG,Ran

)
only depends on the local behavior of G! Furthermore, it is easy to explain what happens along
fibers of φ. Namely, φ−1(x) consists of G-bundles on X equipped with a trivialization on X \
{x}. Using the uniformization theorem for BunG(X), we see this is just the affine Grassmannian
GrxG := G(Kx)/G(Ox), where Ox ' k[[tx]],Kx ' k((tx)). This is an ind-projective variety, and
φ : GrG,Ran → Ran(X) is ind-proper. Thus φ!(ωGrG,Ran

) = φ∗(ωGrG,Ran
), and therefore

i!xφ!(ωGrG,Ran
) = Γc(GrxG, ωGrxG).

There is a natural generalization: take a finite set I = {x1, . . . , xn} ∈ Ran(X) and let iI : I ↪→
Ran(X) be the inclusion. Then φ−1(I) = Grx1G × · · · ×GrxnG and

i!Iφ!(ωGrG,Ran
) =

⊗
i∈I

Γc(GrxiG , ωGrxiG
).
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1.3. Sketch of proof for non-abelian Poincare duality. Let us now sketch the proof of non-
abelian Poincare duality. First, to show that GrG,Ran → BunG(X) induces an isomorphism on
l-adic homology, it suffices to check it locally. Namely we’d like to show for any S := Spec(R)-point
of BunG(X) and corresponding Cartesian diagram,

S ×BunG(X) GrG,Ran GrG,Ran

S BunG(X)

πP ρ

P

the projection map πP induces an isomorphism in l-adic homology. Denote

Sect(P) := S ×BunG(X) GrG,Ran.

Let us now introduce two prestacks of rational maps:

Definition 1.3. Let X be a smooth, connected projective curve and Y an affine scheme. Define
the prestack

MapsRan(X,Y ) : (Schaff)op → Set ⊂ ∞-Grpd

whose value on affine test schemes S consist of the data of a nonempty finite subset x ⊂ Maps(S,X)
plus a rational map S ×X → Y which is regular on S ×X \ Γx.

We may express MapRan(X,Y ) as a colimit of certain ind-schemes MapsXI (X,Y ).

Definition 1.4. Let X be a smooth, connected projective curve and Y an affine scheme. Define
the prestack

Mapsgen(X,Y ) : (Schaff)op → Set ⊂ ∞-Grpd

whose value on affine test schemes S consist of the collection of maps m : U → Y where U ranges
over the open subsets of S ×X such that ∀s ∈ S, U ∩ (s ×X) 6= ø, and two maps m1 : U1 → Y ,
m2 : U2 → Y are identified if they are equal on the intersection U1 ∩ U2.

The main difference between the Ran and generic prestack of rational maps is that Ran specifies
the location of the poles whereas Mapsgen(X,Y ) does not. Hence, there is a natural forgetful map
of prestacks

MapRan(X,Y )→ Mapgen(X,Y ).

In fact, this map induces an isomorphism on l-adic homology [G1, Cor. 2.3.6]. A heuristic explana-
tion for this is that the fibers of this map are acted on transitively by Ran(X) with its semigroup
structure, and Ran(X) is homologically contractible (See Section 2.1 below).

Let us explain a series of steps to reduce Theorem 1.2 to the claim that the space of rational
maps from X to G is contractible.

(1) If P and P ′ are G-bundles on S ×X which are isomorphic over an open set S ×X \ Γx for
some finite subset x ⊂ Maps(S,X), then the projection Sect(P) → S induces an isomorphism on
l-adic homology if and only if Sect(P ′)→ S does.

Indeed, this follows because Sect(P) is just identified with the Spec(R) points of SectRan(X,P),
and this space is homologically equivalent to Sectgen(X,P) of generic sections X → P, and the
latter is insensitive to replacing X by some Zariski open U ⊂ X because it only captures the generic
behavior of maps.

(2) Every principal G-bundle P over S × X is generically trivial (after passing to some etale
cover). Hence we may assume P = Ptriv is the trivial G bundle on S ×X.

We say P is “generically trivial” over S ×X if there is some open U ⊂ S ×X for which U → S
is surjective and P is trivial on U . Existence of a generic trivialization (on an etale cover of S, but
this is insensitive to homology) follows from Drinfeld and Simpson (and discussed in Minh-Tam’s
talk) in the case G is split. In Lurie lecture 13, it is explained how to modify Drinfeld-Simpson
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theorem for the non-split case. Thus we can just take U to be the open for which P trivializes, and
consequently may just assume P is trivial.

(3) We may assume G is generically split and R = k. In this case, Sect(Ptriv) = MapsRan(X,G)
where G is now thought of as a simply-connected, semisimple algebraic group over k.

Thus, it just remains to prove the following theorem:

Theorem 1.5. Suppose G is simply-connected, semisimple algebraic group over k, and X is a
smooth projective curve over k. Then the projection MapsRan(X,G)→ Spec(k) induces an isomor-
phism in the l-adic homology.

The entire next section is devoted to proving Theorem 1.5

2. Proof of contractibility

2.1. Contractibility of Ran space. First, suppose G = e is the trivial group. Then Theorem
1.5 claims the Ran space RanX is homologically trivial. This celebrated theorem is originally due
to [BD, Prop 3.4.1]. We sketch the proof as done in Lurie’s lecture 10. We wish to show

H∗(Ran(X),Zl) =

{
Zl if ∗ = 0

0 else.

Since X is connected, each XI is connected, hence H0(XI ,Zl) = Zl. Since Ran(X) is a pseudo-
indscheme, its zeroth homology is the direct limit (in the ∞-category ModZl

) of these trivial
homology groups, hence is trivial. Next, suppose by induction Hi(Ran(X),Zl) = 0 for 0 < i < n.
Let V = Hn(Ran(X),Zl). Then Kunneth theorem says, since all homologies for i < n vanish,

Hn(Ran(X)×k Ran(X),Zl) = V ⊕ V
Next, an object of Ran(X) is (R,S) for R a k-algebra and S a finite non-empty subset of X(R).
Thus there is the evident “multiplication” map given by taking union:

m : Ran(X)× Ran(X)→ Ran(X), ((R,S), (R,S′)) 7→ (R,S ∪ S′).
On homology, this becomes a map V ⊕ V → V , which we identify with a pair of linear maps
λ, µ : V → V . By symmetry, we must have λ = µ. The key property that RanX satisfies is that
the composition

Ran(X)
∆−→ Ran(X)× Ran(X)

m−→ Ran(X)

is the identity, where ∆ is the diagonal inclusion. Thus, 2λ(v) = v for all v ∈ V . Now, pick a point
x ∈ X and denote {x} ∈ Ran(X) the corresponding k-point: ix : Speck → Ran(X). Let F denote
the composite map

F : Ran(X)
(ix,id)−−−−→ Ran(X)× Ran(X)

m−→ Ran(X).

Passing to homology, we find that F is idempotent: F 2 = F : V → V and it is given by v 7→ λ(v).
Thus, 2λ(v) = 2λ(λ(v)) = λ(v) implies λ(v) = 0 for all v. Consequently, v = 2λ(v) = 0 for all v,
which implies V = 0. This completes the proof.

2.2. Contractibility of space of rational maps. Now consider the prestack of generic rational
maps Mapsgen(X,Y ) (See Definition 1.4), where X is a smooth projective curve and Y is a quasi-
projective k-scheme. We wish to show it is cohomologically trivial when Y = G. Let us make two
reductions:

(1) Suppose Y has a decomposition Y = ∪iYi such that the contractibility statement holds for all
finite intersections Yi1 ∩ · · · ∩ Yir . Then the contractibility statement holds for Y . As a corollary,
we may assume Y = An \ V (f) is a principal open affine, where f ∈ k[x1, . . . , xn].

This follows formally because the natural map colimIMapsgen(X,YI)→ Mapsgen(X,Y ) becomes
an isomorphism of stacks once we take stackifications of both sides. Here, YI := ∩i∈IYi. Then,
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taking l-adic homology is insensitive to stackification, so we deduce the claim. For a more rigorous
proof, we direct the reader to [L, Lecture 16, Prop. 7].

(2) Reduction (1) applies to Y = G, a semi-simple simply-connected group over k.
Indeed, let B be a Borel subgroup, and let Bop be the opposite Borel so that B ∩ Bop = T is a

maximal torus. Let U,Uop be the unipotent radical of B, resp. Bop. The Bruhat decomposition
implies V := U × T ×Uop ⊂ G is an open, dense subset. Observe that U,Uop are unipotent, hence
affine, and the torus T is of the form An \V (f), where f = x1 · · ·xn. Since G is quasi-compact, we
may write G =

⋃
i≤n giV for some translates gi ∈ G(k). Note that VI := ∩i∈IgiV is an open subset

of V . Hence, we may write VI ↪→ Ad where d = dim(G) and assume it is the complement of the
vanishing of some f ∈ k[x1, . . . , xd].

Remark 1. There exists a 3rd reduction: we may even further replace X with P1, or even A1, but
we do not need it. To explain this reduction, we just consider a finite map X → P1, and then use
Weil restriction to conclude

Mapsgen(P1,ResXP1Y ) = Mapsgen(X,Y ))

Now, when Y is affine space, its Weil restriction is affine and we’re done. If Y = An − V (f) is
basic open affine, then its Weil restriction is “generically” basic open affine, and generic maps only
capture generic behavior, so we are done again. To go from P1 to A1, we use that replacing the
source by dense open does not affect the generic maps.

In summary, we are reduced to proving the following concrete statement:

Theorem 2.1 (Drinfeld). The prestack MapRan(X,An − V (f)) is acyclic in the l-adic homology.

Proof. Let U = An − V (f). Let us first introduce the intermediate prestack

MapsRan(X,U) ⊂ MapsRan(X,U ⊂ An) ⊂ MapsRan(X,An)

which consists of rational maps X → An which generically land in U . This induces the same l-adic
homology as MapsRan(X,U), as explained in [L, Lec 16, Prop. 6]

We will show the fibers of MapRan(X,U ⊂ An) over Ran(X) are filtered colimits of prestacks
that are A1-contractible. Then using that Ran(X) is also contractible, we will have our result. Now,
fix a point x = (x1, . . . , xr) ∈ Ran(X). This induces the fiber Maps(X − x, U ⊂ An), consisting of
regular maps X − x→ An which generically land in U .

Consider
Maps(X − x,An)≤N ⊂ Maps(X − x,An),

the prestack of rational maps (u1, . . . , un) : X → An such that deg(ui) ≤ N for all i, where degree
means order of pole at x1. We will show for any N ≥ 0, the embedding

Maps(X − x,An)≤N ∩Maps(X − x, U ⊂ An) ↪→ Maps(X − x, U ⊂ An)

is homotopic to the constant map.
Using Noether normalization, we may assume f is monic in z1 and write

f = zd1 +
∑
d′<d

zd
′

1 fd′(z2, . . . , zn) ∈ k[z1, . . . , zn]

Lemma 2.2. Suppose (u1, . . . , un) ∈ Maps(X − x,An) are such that deg(ui) ≤ N for i ≥ 2 and
f(u1, . . . , un) = 0. Then there exists N ′, depending only on N and degree of coefficients, deg(fd′),
of f , such that deg(u1) ≤ N ′.

Proof of lemma. If f(u1, . . . , un) = 0, then deg(ud1) = deg(
∑d

i=2 fi(u2, . . . , un)ui1). If deg(ui) ≤ N
for i > 1, then deg(fi(u2, . . . , un)) ≤ N ′ for some N ′ depending on N and coefficients of f . Then,
writing u1 as quotient of two polynomials, we find the right hand side of deg(ud1) has degree
deg(ud1) ≤ (d− 1)deg(u1) +N ′. Thus deg(u1) ≤ N ′. �
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Now, consider the homotopy

(u1, . . . , un) 7→ (1− t)(u1, . . . , un) + (tw1, 0, . . . , 0)

where (u1, . . . , un) ∈ Maps(X − x,An)≤N ∩Maps(X − x, U ⊂ An) and w1 is chosen to be some
rational function on X with order of pole at x1 greater than N ′, and N ′ is chosen to be as in Lemma
2.2. Then, by construction, for each t, the image of this homotopy lands in Maps(X − x, U ⊂ An).
And at t = 1, we just get the constant map. �

References

[BD] A. Beilinson, V. Drinfeld, Chiral Algebras
[L] J. Lurie, Lecture notes 10, 12, 13, 16, 17 on Tamagawa number
[G1] D. Gaitsgory, Contractibility of the space of rational maps
[G2] D. Gaitsgory, Lectures Jan 17, 2023 and Jan 24, 2023 at Geometric Langlands office hours


	1. Non-abelian Poincare duality
	1.1. l-adic homology for prestacks
	1.2. !-fibers of H*(BunG,BunG)
	1.3. Sketch of proof for non-abelian Poincare duality

	2. Proof of contractibility
	2.1. Contractibility of Ran space
	2.2. Contractibility of space of rational maps

	References

